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Abstract. Starting from the Fierz transform of the two-flavour ’t Hooft interaction (a four-fermion La-
grangian with antisymmetric Lorentz tensor interaction terms augmented by an NJL type Lorentz scalar
interaction responsible for dynamical symmetry breaking and quark mass generation), we show that: (1)
antisymmetric tensor Nambu-Goldstone bosons appear provided that the scalar and tensor couplings stand
in the proportion of two to one, which ratio appears naturally in the Fierz transform of the two-flavour ’t
Hooft interaction; (2) non-Abelian vector gauge bosons coupled to this system acquire a non-zero mass.
Axial-vector fields do not mix with antisymmetric tensor fields, so there is no mass shift there.

1 Introduction

It has long been known that four-fermion contact inter-
actions of the Nambu and Jona-Lasinio [NJL] type can
lead to dynamical symmetry breaking along with asso-
ciated composite spinless Nambu-Goldstone [NG] bosons
[1]. Such interactions have been extended to include all
but six of the 16 independent Dirac matrix bilinears. The
six still unexplored terms correspond to the antisymmet-
ric [a.s.] tensor σµν = (i/2) [γµ, γν ] self-interaction, which
leads after bosonisation to antisymmetric tensor bosonic
excitations [2]. Elementary antisymmetric tensor fields
were introduced into field theory by Ogievetskii and Pol-
ubarinov [3], into string theory by Kalb and Ramond [4]
and into models of confinement by Nambu [5], but their
origin was not specified.

The purpose of this paper is to show that: 1) a model
that combines the NJL dynamical symmetry breaking
with an antisymmetric tensor quark self-interaction, ob-
tained from the two-flavour ’t Hooft interaction by a Fierz
rearrangement, leads to massless composite antisymmet-
ric tensor and pseudotensor NG bosons at a.s. tensor cou-
pling equal to one half of the scalar coupling constant
GT = 1

2GS ; 2) vector boson coupled to this system ac-
quires a non-zero mass.

2 Preliminaries

We shall work with a chirally symmetric field theory de-
scribed by

LENJL = ψ̄
[
i∂/]ψ + GS

[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
+ GT

[
(ψ̄σµνψ)2 + (ψ̄iγ5σµντψ)2

]
, (1)

where ψ is a two-component (isospinor) Dirac field. We
shall have no need for the pseudoscalar term in the first
line of (1) in the forthcoming analysis, but will keep it
to preserve the underlying SUL(2) × SUR(2) chiral sym-
metry. The antisymmetric tensor self-interaction in the
second line of (1) preserves this chiral symmetry, but vi-
olates the axial baryon number UA(1) conservation [6].
[This self-interaction is related to the two-flavour ’t Hooft
interaction [7] by a Fierz identity.]

There is another, hidden symmetry of the a.s. tensor
term (the second line in the Lagrangian (1) that has not
been explored in this context heretofore and which we
shall call the “duality symmetry”. It is induced by the
identity

γ5σµν =
i

2
εµναβσ

αβ = iσ?
µν = iσ̃µν (2)

which allows the second line in the Lagrangian (1) to be
written as

G T

[
(1 + λ) (ψ̄σµνψ)2 + λ(ψ̄iγ5σµντψ)2

+ λ(ψ̄iγ5σµνψ)2 + (1 + λ) (ψ̄σµντψ)2
]
. (3)

where λ is an arbitrary (real) “duality-symmetry gauge
fixing parameter”. Manifestly, physical predictions of this
model must be independent of λ. As a particular conse-
quence of duality the a.s. tensor term in the Lagrangian
(1) vanishes identically in the Abelian, i.e. one-flavour
(Nf = 1) case:

G
[
(ψ̄σµνψ)2 + (ψ̄iγ5σµνψ)2

]
= 0 . (4)
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Fig. 1. The two Schwinger-Dyson equations de-
termining the dynamics of this model in the
Hartree + RPA approximation: a the one-body,
or “gap” equation; and b the two-body, or Bethe-
Salpeter equation. The thin solid line is the bare,
or “current” quark, the heavy solid line is the con-
stituent quark and the double solid line is either
the composite antisymmetric tensor-, or pseudo-
tensor boson

We shall have to pay particular attention to maintaining
the duality-symmetry of this theory in the approximations
used here.

The non-perturbative dynamics of the model, to lead-
ing order in 1/NC , are described by two Schwinger-Dyson
[SD] equations: (i) the gap equation, Fig. 1a; and (ii)
the Bethe-Salpeter [BS] equation, Fig. 1b. Our model has
three parameters: two coupling constants GS , GT of di-
mension (mass)−2 and a regulating cut-off Λ that deter-
mines the mass scale. In the Hartree approximation, i.e.,
to leading order in 1/NC , the gap equation

m = 16iNCGS

{∫
d4p

(2π)4
m

p2 −m2

}
reg

, (5)

for Nc colours, regulated following either Pauli and Villars
(PV), or dimensionally [8], establishes a relation between
the constituent quark mass m and the free parameters
GS and Λ. [Regularization of the quantity in braces is
indicated by its subscript.] This relation is not one-to-one,
however: there is a double continuum of allowed GS and
Λ values that yield the same nontrivial solution m to the
gap equation. One of these degeneracies can be eliminated
by fixing the spinless (0−) Nambu-Goldstone [NG] boson
decay constant fp at its observed value.

3 Bethe-Salpeter equation:
antisymmetric polarization tensors

The second Schwinger-Dyson equation is an inhomoge-
neous Bethe-Salpeter (BS) equation

D = 2G + 2GΠD, (6)

describing the scattering of quarks and antiquarks,
Fig. 1b. Because there is potential for mixing between
channels, all objects in the BS equation are 4 × 4 matrices.
Here G is the (effective) T coupling constant matrix

G = GT

(
α1 0
0 β1

)
(7)

corresponding to the interaction Lagrangian

GT

[
α(ψ̄σµνψ)2 + β(ψ̄iγ5σµνψ)2

]
(8)

parametrized by a couple of parameters α, β in each iso-
spin channel. Here 1 is a 2 × 2 unit matrix (corresponding
to two channels), the “upper” submatrix describes the T
and the “lower” one the PT channel, and Π is the a.s.
polarization tensor matrix whose matrix elements we must
evaluate.

To leading order in NC , the polarization Π(k) is just
a single-loop diagram. The form of the interaction in (1)
gives rise to scattering in four channels: the familiar iso-
vector-pseudoscalar (pion) channel and the isoscalar-scalar
(sigma) channel and the corresponding two antisymmetric
(pseudo-)tensor channels of opposite parity.

Antisymmetric polarization tensors. To leading order in
NC , the polarization Π(k) is just a single-loop diagram.
The form of the interaction in (1) gives rise to four polar-
ization functions: two (isovector and isoscalar) in the an-
tisymmetric tensor and pseudo-tensor channels each. We
start with the a.s. tensor polarization:

−iΠT,ab
µν;αβ = −iΠT

µν;αβ(q2)δab (9)

= 2NCδ
ab

∫
d4p

(2π)4
tr[iσµνS(p+ q)iσαβS(p)]

and similarly for the pseudotensor polarization

−iΠPT,ab
µν;αβ = −iΠPT

µν;αβ(q2)δab (10)

= 2NCδ
ab

∫
d4p

(2π)4
tr[γ5σµνS(p+ q)γ5σαβS(p)].

There are two independent a.s. tensors,

T I
µν,αβ =

1
2

[gµαgνβ − gµβgνα] (11)

T II
µν,αβ =

1
2q2

[gµαqνqβ + gνβqµqα − gµβqνqα − gναqµqβ ] ,
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so we may write the polarization tensors as follows

ΠPT
µν,αβ(q2) = ΠI

PT(q2)T I
µν,αβ +ΠII

PT(q2)T II
µν,αβ

ΠT
µν,αβ(q2) = ΠI

T(q2)T I
µν,αβ +ΠII

T (q2)T II
µν,αβ , . (12)

without loss of generality. In four dimensions the identity
(2) demands the following “duality” relations between the
tensor and pseudotensor polarizations

Π̃T
µν,αβ(q2) =

1
4
εµνγδΠ

γδ,σρ
T (q2)εσραβ

= ?ΠT ?
µν,αβ(q2) = ΠPT

µν,αβ(q2)

Π̃PT
µν,αβ(q2) =

1
4
εµνγδΠ

γδ,σρ
PT (q2)εσραβ

= ?ΠPT ?
µν,αβ(q2) = ΠT

µν,αβ(q2). (13)

Equations (13) imply the following constraints

ΠI
T = − (ΠI

PT +ΠII
PT
)

ΠII
T = ΠII

PT = ΠII . (14)

These results are both theoretically important and valu-
able in the evaluation of the polarization functions.

We evaluate the traces in four dimensions, so as to
avoid ambiguities in the definition of γ5 matrix in non-
integer dimensions and to conform with the duality re-
quirements (14). One finds

ΠI
PT(s) = −1

3
[−16f2

p − 48iNCJ + 2g−2
p

(
s+ 8m2)F (s)

]
= ΠI

T(s) − 8f2
pF (s)

ΠI
T(s) = −1

3
[−16f2

p − 48iNCJ + 2g−2
p

(
s− 4m2)F (s)

]
ΠII(s) =

4
3
g−2

p

[
sF (s) + 2m2 (F (s) − 1)

]
= −2ΠV(s) , (15)

where

F (s) =
{I(s)}reg

{I(0)}reg

= 1 − 3g2
p

2π2

{√
−fArccot

√
−f − 1

}
reg

(16a)

f = 1 − 4m2/s (16b)

g−2
p =

(
fp

m

)2

= −4iNC {I(0)}reg , (16c)

and I(k), J are the, respectively, logarithmically and qua-
dratically divergent one-loop integrals

I(k2) =
∫

d4p

(2π)4
1

[p2 −m2][(p+ k)2 −m2]
(16d)

J =
∫

d4p

(2π)4
1

[p2 −m2]
. (16e)

(16c) describes the Goldberger-Treiman [GT] relation,
which is a chiral Ward identity and happens to hold in

most regularization schemes, even when they violate other
Ward identities. The set of a.s. tensor polarization func-
tions (15) requires

m2 {I(0)}reg = {J}reg (17)

in order to satisfy the duality constraint (14), however.
This is the same condition that converts the gauge-variant
sharp Euclidean space cutoff vector polarization function
ΠV into the gauge invariant [g.i.] one in (15). This proce-
dure eliminates the quadratically divergent integral from
the vector polarization function ΠV(s), [9], and thus
makes sure that the photon remains massless. (17) holds
in the Pauli and Villars (PV) scheme for only one value
of the cutoff Λ, and even the signs of the two sides of this
“equation” in the PV scheme coincide only in a narrow
region of cutoff Λ and mass m values. With dimensional
regularization, however,

m2

{∫
dnp

(2π)n

1
(p2 −m2)2

}
dim

=
(n

2
− 1
){∫ dnp

(2π)n

1
p2 −m2

}
dim

(18)

holds as an identity. With the help of the GT relation,
however, (17) can be written as

4
{
f2

p

}
PV

= − 1
GS

. (19)

As a consequence of dual symmetry we are facing here two
alternatives: (1) imaginary decay constant fp and compos-
ite boson-fermion coupling constant gp, or (2) negative
four-fermion coupling constant GS. We choose the latter.
In other words, with g.i. and duality-invariant regulariza-
tions, such as the dimensional one, the sign of the scalar
coupling constant GS in (1) is opposite to the usual one.
As pointed out earlier, this coupling constant is not an ob-
servable, so we may flip its sign with impunity so long as
observables, such as the fermion mass and the p.s. decay
constant fp remain unaffected, which is precisely the case
here. This seems a small price to pay for a regularization
scheme that is consistent with the gauge and duality sym-
metries. Moreover, this prescription also allows us to use
the dimensional regularization in the NJL model.

Upon enforcing the relation (19) in (15), we find

ΠI
PT(s) = −2

3
g−2

p

[(
s+ 6m2)F (s) + 2m2 (F (s) − 1)

]
= ΠI

T(s) − 8f2
pF (s)

ΠI
T(s) = −2

3
g−2

p

[(
s− 6m2)F (s) + 2m2 (F (s) − 1)

]
= ΠA(s)

ΠII(s) =
4
3
g−2

p

[
sF (s) + 2m2 (F (s) − 1)

]
= −2ΠV(s) . (20)

We shall call these results “gauge invariant a.s. tensor po-
larization functions” and use them forthwith as the only
option.
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Antisymmetric tensor-pseudotensor mixing matrix ele-
ments. The duality identity (2) also connects the a.s.
polarization tensor to the a.s. polarization pseudo-tensor
and hence to the mixing of the two modes via the nonva-
nishing PT-T transition matrix element [ME]

ΠPT−T
µν;αβ = 2iNC

∫
d4p

(2π)4
tr[γ5σµνS(p+ q)iσαβS(p)]

= −1
2
ε γδ
µν ΠT

γδ,αβ(q2) = −?ΠT
µν,αβ(q2)

=
1
2
ε γδ
αβ ΠPT

µν,γδ(q
2) = ΠPT ?

µν,αβ(q2) . (21)

This leads to the following product of matrices

GΠ = ΠG = GT

(
(α− β)ΠT 0

0 − (α− β)ΠPT

)
(22)

As we can see, the T and PT channels are separate now,
the only effect of mixing being the perhaps unexpected,
yet duality-gauge-invariant linear combination (α− β) =
(1 + λ) − λ = 1.

4 Bethe-Salpeter equation:
antisymmetric tensor meson propagators

After separating the two opposite parity channels in (6)
we find as the solutions

DI
T =

2αGT

1 − 2 (α− β)GTΠI
T(q)

DII
T = 2αGT

[
1

1 − 2 (α− β)GT

(
ΠI

T(q) +ΠII(q)
)

− 1
1 − 2 (α− β)GTΠI

T(q)

]

= 2αGT

[
1

1 + 2 (α− β)GTΠI
PT(q)

− 1
1 − 2 (α− β)GTΠI

T(q)

]

DI
PT =

2βGT

1 + 2 (α− β)GTΠI
PT(q)

DII
PT = 2βGT

[
1

1 − 2 (α− β)GTΠI
T(q)

− 1
1 + 2 (α− β)GTΠI

PT(q)

]
, (23)

Hence we see that the denominators are duality-gauge in-
variant, but not so the numerators.

Duality constraints on the solutions to the BS equation.
Now remember that a T channel propagator can be turned

into a PT one by the duality transformation. Hence the
“complete” propagators are given by

D
′
T(G) = DT(G) + D̃PT(G)

D
′
PT(G) = DPT(G) + D̃T(G) , (24)

respectively. As we shall show below, these two complete
propagators are duality-gauge invariant and they describe
two distinct particles in the sense that their parities are
opposite. These two particles couple differently to particles
with other spins and parities, as will be shown in the next
section, although they are produced by one and the same
interaction.

Duality transformation turns the tensor propagator
into a rescaled pseudotensor one, with the opposite sign
of the coupling constant:

βD̃I
T(G) =

−2αβG
1 − 2 (α− β)GΠI

T(q)

−2βαG

[
1

1 − 2 (α− β)G
(
ΠI

T(q) +ΠII(q)
)

− 1
1 − 2 (α− β)GΠI

T(q)

]

=
−2βαG

1 − 2 (α− β)G
(
ΠI

T(q) +ΠII(q)
)

=
−2βαG

1 + 2 (α− β)GΠI
PT(q)

= −αDI
PT(G) , (25)

and similarly

βD̃II
T(G) = −αDII

PT(G) . (26)

These imply the following identities

βD̃T(G) = −αDPT(G)

αD̃PT(G) = −βDT(G) . (27)

Inserting these results into (24) we find

DI ′
T =

2 (α− β)GT

1 − 2 (α− β)GTΠI
T(q)

DII ′
T = 2 (α− β)GT

[
1

1 + 2 (α− β)GTΠI
PT(q)

− 1
1 − 2 (α− β)GTΠI

T(q)

]

DI ′
PT =

−2 (α− β)GT

1 + 2 (α− β)GTΠI
PT(q)

DII ′
PT = −2 (α− β)GT

[
1

1 − 2 (α− β)GTΠI
T(q)

− 1
1 + 2 (α− β)GTΠI

PT(q)

]
. (28)
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Hence we see that the total tensor and pseudotensor prop-
agators are not identical, as some have conjectured, but
are related to each other by the duality transformation.

As a check of our procedure we see that for a vanish-
ing interaction Lagrangian (4), i.e., with α = β the net
propagation of the true (“total”) a.s. tensor, or a.s. pseu-
dotensor modes also vanishes

D
′
T(α = β) = D

′
T(α = β) = 0 . (29)

Moreover, as stated above, for tensor ’t Hooft interaction
Lagrangian (3), i.e., with α 6= β the total T and PT mode
propagators (29) are duality-gauge invariant as they de-
pend only on the duality-gauge invariant linear combina-
tion α− β.

Nambu-Goldstone bosons. The poles in the propagators
(28), determine the masses of the T, PT states, while the
residues determine their coupling constants to the quarks.
There are two sets of poles/masses (a) pseudotensor

DI ′
PT(s) =

−2GT

1 + 2GTΠI
PT(s)

(30)

=
g2
PT

[(s+ 6m2)F (s) + 2m2 (F (s) − 1) −m2
T]

and (b) tensor

DI ′
T (s) =

2GT

1 − 2GTΠI
T(s)

(31)

=
g2
T

[(s− 6m2)F (s) + 2m2 (F (s) − 1) +m2
T]
,

where we introduced the (gauge invariant) “tensor mass”
mT as

m2
T = − 3g2

p

4GT
, (32)

and the associated zero-external-momentum coupling con-
stants as

g2
p =

(
m

fp

)2

=
(2π)2

NC

(
2∑

s=0

Cs log(M2
s /m

2)

)−1

=
2
3
g2
T

(
1 +

( gp

2π

)2
)

=
2
3
g2
PT

(
1 +

( gp

2π

)2
)
, (33)

where the Cs and M2
s = m2 + αsΛ

2 are the standard
parameters of the Pauli-Villars regularization scheme [8],
and fp is the p.s. “pion” decay constant.

We find a remarkable symmetry pattern in the mass
spectrum: there are four poles 1 symmetrically placed
about the origin with locations at ±6m2 ±m2

T. One finds

1 Remember that there are two isospin channels, isoscalar
and isovector, which differ only in the overall sign of the tensor
coupling constant GT .

two massless poles (in the chiral limit 2), one in the an-
tisymmetric pseudotensor- and another in the a.s. tensor
channel, at s = 0 (Nambu-Goldstone) provided that

m2
T = 6m2 , (34)

holds, which is equivalent to G−1
T = −8f2

p = 2G−1
S . Note

that precisely this ratio of the two coupling constants
arises when one takes the Fierz transform of the Nf = 2,
NC = 1 ’t Hooft interaction [7] as the interaction La-
grangian. The relations (32), (34) bear remarkable simi-
larity to analogous relations for the vector mass and cou-
pling constant in the ENJL model [9]. In other words,
(34) defines a critical point in the space of a.s. T coupling
constants in this theory. Change of GT or GS can lead
to (phase) transitions to other phases of the theory, and
thence to tachyons.

5 The Higgs effect

By replacing the partial derivative ∂µ with the covariant
one Dµ = ∂µ − ieAµ , in the Lagrangian (1) and adding
the gauge field Lagrangian to it, we can couple a gauge
field Aµ to the fermions in this model. We will work in a
class of covariant gauges parametrized by a gauge fixing
parameter ξ. That amounts to adding the gauge-fixing
term

Lgauge fixing = −1
2
ξ (∂µA

µ)2 (35)

to the Lagrangian Eq. (1) and consequently having

Dµν(q) =
−1
q2

[
gµν −

(
1 − 1

ξ

)
qµqν

q2

]
(36)

as the “bare” gauge boson propagator. This propagator is
“dressed” by vacuum polarization correction parametrized
by the gauge invariant tensor

πµν(q) =
(
qµqν − gµνq

2)π(q2) (37)

according to the Schwinger-Dyson equation

Dµν(q) = Dµν(q) +Dµλ(q)πλσ(q)Dσν(q) . (38)

The solution to this SDE reads

Dµν(q) =
−1
q2

[(
gµν − qµqν

q2

)
1

1 − π(q)
+

1
ξ

qµqν

q2

]
.(39)

Schwinger observed [10] that when the vacuum polariza-
tion function π(q2) has a simple pole at q2 = 0, the dressed
gauge boson propagator

q2 (1 − π(q)) = q2 −M2
V , (40)

2 Some doubts have been expressed with regard to the NG
nature of these massless poles. These doubts ought to be al-
layed by the fact that the T, PT states acquire a mass upon ex-
plicit breaking of the chiral symmetry by current quark masses.
This mass equals the pion mass under the same circumstances.
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Fig. 2. The vector current polarization tensor πµν . The wavy
lines are the Yang-Mills vector bosons, solid lines are con-
stituent quarks and the double solid line is the antisymmetric
pseudo-tensor boson

acquires a finite gauge-invariant dressed mass MV deter-
mined by the residue of π at the pole as follows

M2
V = lim

q2→0
q2π(q) . (41)

This is also the way the “conventional” Higgs mechanism
operates [11]. We see in (40) that it is absolutely crucial
for π(q) to have a pole at precisely q2 = 0, or else the
dressed gauge boson remains massless.

That this is indeed the case in the present theory, we
can see by constructing the vector polarization tensor πµν ,
see Fig. 2. For that we need the vector-pseudotensor [V-
PT] transition matrix element ΠV −PT

µνα , which is again
given by the simple one-loop graph appearing in Fig. 2.
One finds

ΠV−PT
µνα (s) = iemg−2

p F (s)εµναβq
β . (42)

[Note that the analogous A-T transition tensor vanishes,
i.e., a.s. tensors do not couple to axial-vector currents.
This shows a definite asymmetry between the two sectors
with opposite parities.] Inserting this into

πµν(q) = ΠV −PT
µαβ (q)DPT (q2)ΠPT−V

ναβ (q)

=
[
qµqν − q2gµν

] (
emg−2

p

)2
(43)

× 3g2
pF

2(q2)
[(q2 + 6m2)F (q2) + 2m2 (F (q2) − 1) −m2

T]
,

we find

M2
V = lim

q2→0
q2π(q) =

3 (efp)
2

1 +
( gp

2π

)2 (44)

in the mT → √
6m limit. In other words, one must have

4GS = 8GT = −f−2
p for the Higgs mechanism to be op-

erative, the same condition as for the masslessness of the
antisymmetric pseudotensor NG bosons.

6 Discussion and conclusions

In conclusion, we have shown that: 1) a non-Abelian sym-
metry model with dynamical symmetry breaking of the
NJL type and an antisymmetric tensor fermion self-inter-
action leads to massless composite antisymmetric tensor
NG bosons at tensor coupling GT = 1

2GS ; and 2) vector
gauge bosons coupled to this system acquire a mass of

√
3efp√

1+( gp
2π )2 , where e is the gauge coupling constant and fp

is the scalar (Higgs) v.e.v.. Such a result may be termed an
“antisymmetric tensor Schwinger-Higgs mechanism” with
composite a.s. T states. The distinction from the usual
(scalar) Higgs mechanism is that there is no a.s. T Higgs
particle. A similar effect with elementary a.s. T fields has
been recognized by Stückelberg [12].

Analogous Higgs mechanism for axial-vector gauge
fields with the original NJL model has been discussed by
Freundlich and Lurié [13]. The Freundlich-Lurié scheme is
the dynamical symmetry breaking mechanism currently
used in many “top-condensation” models of the electro-
weak interactions [14]. The parity of the would-be NG
boson (“the Higgs-Kibble ghost”) is unimportant in appli-
cations to electroweak interactions, where the gauge fields
are one part vector and one part axial-vector, but it is cru-
cial in applications to QCD, which theory conserves par-
ity and whose quanta (gluons) are vector particles. Phe-
nomenological consequences of an a.s. tensor Higgs mech-
anism as applied to the Salam-Weinberg model remain to
be worked out. Applications to the confinement problem
in QCD are being worked on. Last, but not least, this
new a.s tensor Higgs mechanism may have applications in
hadronic effective theories [15].
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